Some Pyrido[2,3-d]thiazole Systems

Charles O. Okafor

Department of Chemistry, University of Nigeria, Nsukku, Nigeria

Received June 30, 1966

In recent studies of the biological activity of pyridine¹ and thiazole² systems, a combination of these two systems leading to pyridothiazoles has been found to show appreciable antiparasitic activity when tested against *Plasmodium lophurae* in ducklings.³ In order to increase this activity and to investigate the effect of 6 substitution on the conversion of 2-aminopyridine in acid medium to the corresponding pyridothiazole, it was thought desirable to synthesize a number of mustisticated and 5-substituted pyrido[2,3-d]thiazole systems. The results are summarized in Table I.

 $Unsubstituted \ 5- \ and \ 6-substituted \ 2-aminopyrido [2,3-d]$ thiazoles were prepared under similar reaction conditions from 2-aninopyridine, 2,6-diaminopyridine, 6-amino-2-picoline, 2hydroxy-6-aminopyridine,6 and 2-methoxy-5-aminopyridine. In a typical experiment, 2-methoxy-5-aminopyridine (20 g, 0.16 mole) was added with efficient mechanical agitation to a mixture of potassium thiocyanate (80 g) and glacial acetic acid (400 ml)while keeping the temperature below -25° . Bromine (10 ml) in glacial acetic acid (20 ml) was added at such a rate that the temperature never exceeded -25° . This temperature was maintained for additional 3 hr. Stirring was continued for 15 hr at room temperature. The mixture was filtered leaving an orange residue. The filtrate was partially neutralized with Na₂CO₃ to give crude 2-amino-6-methoxypyrido[2,3-d]tbiazole (15 g) which was collected by filtration. The orange residue was extracted with boiling acetone. The acetone extract was concentrated in vacua leaving the acetic acid salt which was neutralized with dilute NaOII to give 13 g more of the desired product. The combined product was purified by recrystallization from

TABLE 1 Derivatives of Pyrido[2,3-2][thiazoles

							141 .							
				Yield,			garan Garan San San San San San San San San San S				$\mathcal{I}_{\mathcal{I}}}}_{\mathcal{I}_{\mathcal{I}_{I}_{\mathcal{I}_{\mathcal{I}_{I}}}}}}}}}}$,	
Rı	R_{2}	Х	Y	Mp, °€	Ve-	Forninia	Caled	Found	Caled	Found	Calcd	Found	Caled	Found
11	OCH_3	Ν	$-\mathbf{C}$	201 - 202	83	$C_7H_7N_8OS$	46.41	46.41	3.87	3.85	23.21	23,30	17.68	17.81
11	11	С	Ν	118 - 119	7	$C_6H_5N_3S$	47.66	47.61	3.33	3.23	27.79	27.80	21.21	21.15
CH_3	H	\mathbf{C}	Ν	185 - 186	3	$C_7H_7N_3S$	50.91	50.83	4.24	4.42	25.42	25.45	19.40	19.30
$\rm NH_2$	11	\mathbf{C}	N	140 - 141	32*	$C_6H_6N_4S$	43.37	43.18	3.62	3.79	33.74	33.71	19.34	19.21
OH	11	\mathbf{C}	Ν	>310	55	$C_6H_5N_3OS$	43.12	42.92	3.00	3.10	25.15	25.19	19.16	19.26
4 80	o pof Sh													

" See ref 3b.

By a careful consideration of the implication of the acid medium in which these reactions were run as well as the yields of products, the order in which 6 substitution in 2-aminopyridine enhances the conversion to the corresponding pyridothiazole is $CH_a < H < NH_{a^+} < OH_{2^+}$.

Experimental Section

2-Methoxy-5-acetamidopyridine.—2-Chloro-5-nitropyridine⁴ was prepared from 2-aminopyridine and converted to 2-methoxy-5-nitropyridine,⁵ 30.8 g (0.2 mole) of which was added in small portions during 30 min to a stirred solution of $SnCl_2 \cdot 2H_2O$ (200 g) in concentrated HCl (400 ml). The reduction was exothermic (temperature 90°). Stirring was continued for 24 hr. Evaporation of the HCl *in vacuo* left a solution which, after neutralization with 40% KOH, cooling, and extraction with six portions of ether (100 ml) gave **2-methoxy-5-aminopyridine** (22 g, 89%) as a brown oil. Treatment with acetyl chloride gave dull, creamy platelets of 2-methoxy-5-acetamidopyridine: after two crystallizations from ethanol, mp 154-155°. The infrared spectrum shows a strong amide I band at 5.95 μ .

Anal. Caled for $C_8H_{10}N_2O_2$: C, 57.83; H, 6.02; N, 16.87. Found. C, 57.95; H, 5.91; N, 17.01.

M. M. Vohra and S. N. Pradhau, J. Med. Chem., 8, 296 (1965); T. J. Bardos, N. Datta-Gupta, P. Hebborn, and D. J. Triggle, *ibid.*, 8, 197 (1965).

(2) K. Fromherz and H. Spiegelberg, Hele. Physiol. Pharmacol. Acto. 6, 42 (1948); R. V. Ford, J. Burgess, and J. H. Mayer, Antibiot. Med. Clin. Therapy, 4, 269 (1957); A. Mackie and A. L. Misra, J. Chem. Soc., 3919 (1954).

(3) (a) J. Bernslein, B. Stearns, M. Dexter, and W. A. Lott, J. Am. Chem. Soc., 69, 1147 (1947); (b) J. Bernstein, B. Stearns, E. Shaw, and W. A. Lutt., *ibid.*, 69, 1151 (1947).

(4) M. A. Phillips, J. Chem. Soc., 9 (1941).

(1942). W. T. Caldwell and E. C. Kornfeld, J. Am. Chem. Soc., 64, 1695 (1942).

CHCl₃ (Norit) to give yellow needles of **2-amino-6-methoxy**pyrido[2,3-d]thiazole.

These compounds undergo a facile base-catalyzed hydrolysis to the corresponding o-mercaptoaminopyridine.

Acknowledgment.—This work was supported by Research Grant from the Research Committee of the University of Nigeria.

(b) O. A. Siede and A. I. Titow, Ber., 69, 1884 (1936).

Synthesis of the Isoellipticine, 5,11-Dimethyl-10H-pyrido[3,4-b]carbazole¹

Allan N. Fujiwara, Edward M. Acton, and Leon Goodman

Life Sciences Research, Stanford Research Institute, Menlo Park, California

Received September 29, 1966

Interest in the biological properties and especially antitumor activity of the alkaloid ellipticine (7) prompted the synthesis of the isomer 6, from the known aldehyde² 1 by a sequence recently

(21 P. A. Crauwell and J. E. Saxion, J. Chem. Soc., 3482 (1962).

^{. . . .}

⁽¹⁾ This work was carried out under the anspices of the Cancer Chemotherapy National Service Center, National Cancer Institute, National Institutes of Health, Public Health Service, Contract No. PH43-B4-500. The opinions expressed in this paper are those of the anthors and not necessarily those of the Cancer Chemotherapy National Service Center.